2,849 research outputs found

    Inertial dynamics of a general purpose rotor

    Get PDF
    The inertial dynamics of a fully articulated stiff rotor blade are derived with emphasis on equations that facilitate an organized programming approach for simulation applications. The model for the derivation includes hinge offset and six degrees of freedom for the rotor shaft. Results are compared with the flapping and lead-lag equations currently used in the Rotor Systems Research Aircraft simulation model and differences are analyzed

    Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    Get PDF
    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight

    Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft

    Get PDF
    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis

    Dynamic modelling and estimation of the error due to asynchronism in a redundant asynchronous multiprocessor system

    Get PDF
    The use of Redundant Asynchronous Multiprocessor System to achieve ultrareliable Fault Tolerant Control Systems shows great promise. The development has been hampered by the inability to determine whether differences in the outputs of redundant CPU's are due to failures or to accrued error built up by slight differences in CPU clock intervals. This study derives an analytical dynamic model of the difference between redundant CPU's due to differences in their clock intervals and uses this model with on-line parameter identification to idenitify the differences in the clock intervals. The ability of this methodology to accurately track errors due to asynchronisity generate an error signal with the effect of asynchronisity removed and this signal may be used to detect and isolate actual system failures

    Independent Orbiter Assessment (IOA): Analysis of the hydraulics/water spray boiler subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Hydraulics/Water Spray Boiler Subsystem. The hydraulic system provides hydraulic power to gimbal the main engines, actuate the main engine propellant control valves, move the aerodynamic flight control surfaces, lower the landing gear, apply wheel brakes, steer the nosewheel, and dampen the external tank (ET) separation. Each hydraulic system has an associated water spray boiler which is used to cool the hydraulic fluid and APU lubricating oil. The IOA analysis process utilized available HYD/WSB hardware drawings, schematics and documents for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 430 failure modes analyzed, 166 were determined to be PCIs

    Independent Orbiter Assessment (IOA): Assessment of the hydraulics/water spray boiler subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Hydraulics/Water Spray Boiler (HYD/WSB) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter HYD/WSB hardware. The IOA product for the HYD/WSB analysis consisted of 447 failure mode worksheets that resulted in 183 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 364 FMEAs and 111 CIL items. This comparison produced agreement on all but 68 FMEAs which caused differences in 23 CIL items

    Solenoidal versus compressive turbulence forcing

    Full text link
    We analyze the statistics and star formation rate obtained in high-resolution numerical experiments of forced supersonic turbulence, and compare with observations. We concentrate on a systematic comparison of solenoidal (divergence-free) and compressive (curl-free) forcing, which are two limiting cases of turbulence driving. Our results show that for the same RMS Mach number, compressive forcing produces a three times larger standard deviation of the density probability distribution. When self-gravity is included in the models, the star formation rate is more than one order of magnitude higher for compressive forcing than for solenoidal forcing.Comment: 1 page, to appear in the proceedings of the IAU General Assembly Joint Discussion 14 "FIR2009: The ISM of Galaxies in the Far-Infrared and Sub-Millimetre", ed. M. Cunningha

    `Stringy' Newton-Cartan Gravity

    Get PDF
    We construct a "stringy" version of Newton-Cartan gravity in which the concept of a Galilean observer plays a central role. We present both the geodesic equations of motion for a fundamental string and the bulk equations of motion in terms of a gravitational potential which is a symmetric tensor with respect to the longitudinal directions of the string. The extension to include a non-zero cosmological constant is given. We stress the symmetries and (partial) gaugings underlying our construction. Our results provide a convenient starting point to investigate applications of the AdS/CFT correspondence based on the non-relativistic "stringy" Galilei algebra.Comment: 44 page

    Non-commuting coordinates, exotic particles, & anomalous anyons in the Hall effect

    Full text link
    Our previous ``exotic'' particle, together with the more recent anomalous anyon model (which has arbitrary gyromagnetic factor gg) are reviewed. The non-relativistic limit of the anyon generalizes the exotic particle which has g=0g=0 to any gg.When put into planar electric and magnetic fields, the Hall effect becomes mandatory for all g≠2g\neq2, when the field takes some critical value.Comment: A new reference added. Talk given by P. Horvathy at the International Workshop "Nonlinear Physics: Theory and Experiment. III. July'04, Gallipoli (Lecce, Italy). To be published in Theor. Math. Phys. Latex 9 pages, no figure
    • …
    corecore